

海洋環境與生態研究所 Institute of Marine Environment and Ecology

國立台灣海洋大學 海洋科學與資源學院

Can *Exaiptasia pallida*, a sea anemone, become a key to understanding molecular/cellular/endocrine mechanisms of coral reproduction? Pei-Jung Shao¹, Shinya Shikina^{1,3}, Ching-Fong Chang^{2,3}

¹Institute of Marine Environment and Ecology, National Taiwan Ocean University (NTOU), Taiwan

²Department of Aquaculture, NTOU, Taiwan

³Center of Excellence for the Oceans, NTOU, Taiwan

Introduction

Coral reefs ecosystem is one of the most highest marine biodiversity ecosystem on the earth. In decade, due to global climate change and human activity, coral reefs have been seriously damaged.

Experiment 3

Identification of marker gene for germ cells: *E. pallida* vasa

If we could well-understand the mechanisms of sexual reproduction in coral, it would be helpful to the restoration of coral reefs.

Coral polyp

Problems in research

• Large quantities of live coral are required for research and it will damage nature coral populations

- Collecting sample is laborious
- It is dangerous and costly to collect coral sample by scuba diving

We thought that *Exaiptasia pallida* is similar to coral, and might be used as an experimental model because *Exaiptasia* possesses many advantages as the table below

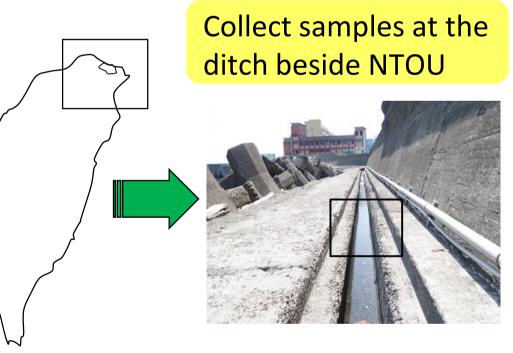
	Scleractinian coral	Characteristic	<i>Exaiptasia</i> sp.
	Cnidaria	Phylum	Cnidaria
	Mostly Anthozoa	Class	Anthozoa
	Mostly Scleractinia	Order	Actinaria
	Polyp	Morphology	Polyp
	Present	Skeleton	Absent
	Dinoflagellates	Symbiodinium	Dinoflagellates
	Slow	Growth speed	Fast
	Annual	Sexual reproductive cycle	Monthly
	Difficult	Induction of spawning in aquariums	Easy
	Tropical /Subtropical	Species distribution	Widely dispersed
	Difficult, Expensive	States of aquaculture	Easy, cheap
	Hard	Tissue dissection	Easy
	Yes	Genomic or transcriptome databases	Yes

A. Sequence of *E. pallida* vasa E. Immunohistochemistry **B. Quantitative RT-PCR C. Western blot** vasa (kDa) -55 ----Mf Ten Ov Mf **D. IHC of laceration pieces** 100 µn

E. pallida vasa was identified as a marker gene for germ cells

Objective To establish research bases of *E. pallida* for revealing the molecular/cellular/endocrine mechanisms underlying sexual reproduction

Experiment 4

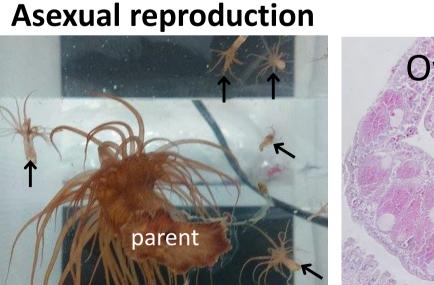

Identification of the process of germ cell development A. Germ cell development in male *E. pallida*

of cnidarian including corals

Experiment 1

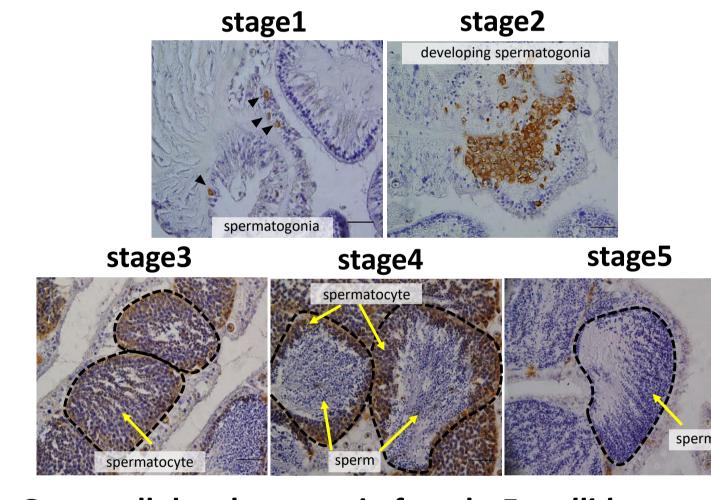
Establishment of *E. pallida* clonal strains

A. Clonal strains of *E. pallida*

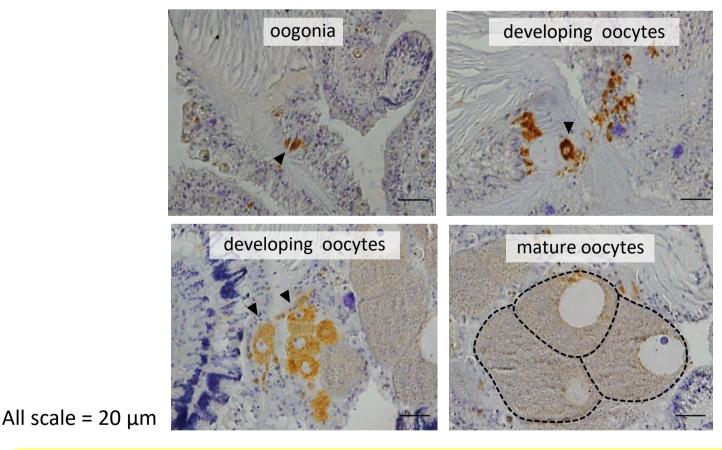

Female clonal strains

Male clonal strains

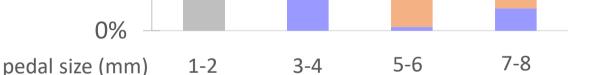
50 µm

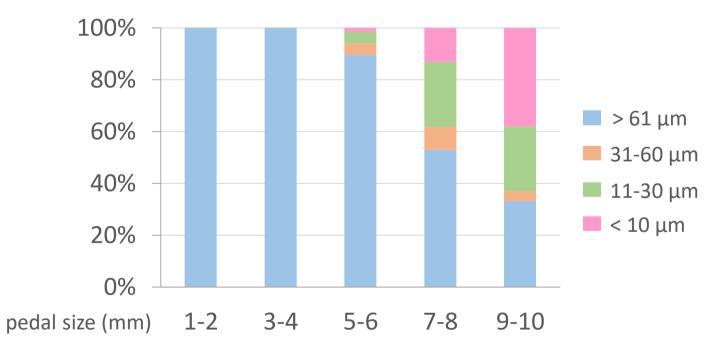


our clonal strains


Flotidi Rea sea r Japan

0.0040

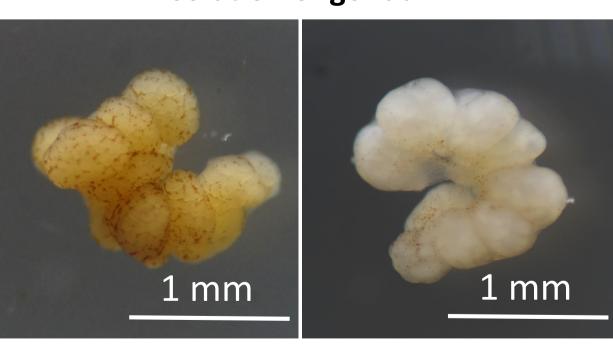

We successfully established clonal strains for our experimental materials


B. Germ cell development in female *E. pallida*

1-2 mm 9-10 mm Pedal diameter **C.** Percentages of different developmental stage 100% 80% stage5 stage4 60% stage3 40% stage2 stage1 20%

D. Percentages of different sizes of ooctye

- The process of germ cell development were revealed
- The sizes of *Exaiptasia* that begin gametogenesis were revealed


Experiment 5

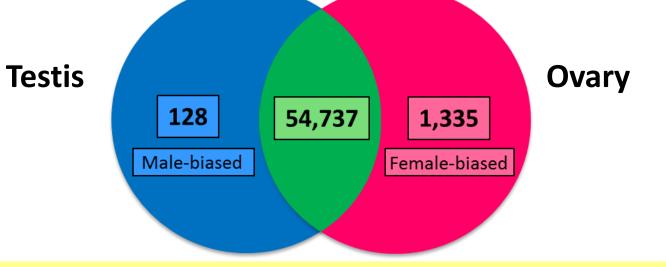
Establishment of gene knockdown technology (RNAi)

Experiment 2

Transcriptome analysis on *E. pallida* ovary and testis

B. Summary statistics of the transcriptome assembly for *Exaiptasia* Isolation of gonad

Illumina Hiseq platform sequencing


de novo assembly

Contig expression analysis (RPKM) Testis vs. Ovary

Annotation

Sequencing	
Total QT reads	234,342,658
Total QT bases	28,153,894,821
Average QT length (bp)	120
Genome mapping	
Mean mapping of Exaipitasia genome	72.80%
(Male/Female)	(72.1% / 73.4%)
De novo assembly of Unmappable Reads	
Total unigene sequences	26,932
Number of base pairs	33,022,712
N50 of unigene sequences (bp)	1,660
Average length of unigene sequences (bp)	1226
Number of unigene sequences >= 500pb	21469
Combined transcriptome (Exaiptasia ref + de novo uniqu	e sequences)
Total unigenes	56200
(Aiptasia Ref/De novo)	(29,268 / 26,932)
Number of base pairs	109,492,074
(Aiptasia Ref/De novo)	(76,469,362 / 33,022,712)
Mean mapping rate of unigenes	98.70%
(Male/Female)	(98.6% / 98.8%)
Average FPKM of unigenes	12.2
(Male/Female)	(10.5 / 13.9)

The distribution of transcripts (unigenes) between testis and ovary

- **Reproduction related gene could be identified in the transcriptome** database
- Sexually dimorphic expressed genes were also identified

Gene	E. pallida	Predicted sequence ID	Reference	
Drosha	. ✓	denovo.id409.tr11045	Song and Wessel, 2007 Owens and Malham, 2015	Control : <i>luciferase</i> -dsRN Treatment : <i>vasa</i> -dsRNA
DGCR8/Pasha			Song and Wessel, 2007 Owens and Malham, 2015	Concentration : 50 ng/μl Volume : 100 μl
Dicer	✓	denovo.id1615.tr28418 (Dicer1) denovo.id251.tr21029 (Dicer2)	Song and Wessel, 2007 Owens and Malham, 2015	 Expression level of the vasa in the E. pallida The number of the germline c in the E. pallida
TRBP			Song and Wessel, 2007	1 F
Argonautes 1	✓	denovo.id866.tr16367	Song and Wessel, 2007	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Argonautes 2	✓	denovo.id4726.tr10895	Song and Wessel, 2007 Owens and Malham, 2015	
Exportin-5			Song and Wessel, 2007	* 400 germania * 000 germania *
Piwi	✓	denovo.id1539.tr32691	Song and Wessel, 2007	
HIV-TRBP = loquacious			Owens and Malham, 2015	n=3
Interferon Regulatory Factor	✓	denovo.id13767.tr43007	Owens and Malham, 2015	
Toll-like Receptor 3			Owens and Malham, 2015	control vasa-dsRNA 0 control vasa-dsRNA

The established RNAi technology can be used as an important tool to investigate gene functions of *E. pallida*

Summary

- We successfully established new materials, database, tools and techniques to study molecular/cellular/endocrine mechanisms of *E. pallida* sexual reproduction
- Using our transcriptome database, we were able to identify genes regarding germ cell development, mitosis and meiosis, hormones and hormone receptors that are expressed in the gonads